Estimating the monthly pan evaporation with limited climatic data in dryland based on the extended long short-term memory model enhanced with meta-heuristic algorithms

Author:

Fu Tonglin,Li Xinrong

Abstract

AbstractAccurate estimation of evaporation is of great significance for understanding regional drought, and managing and applying limited water resources in dryland. However, the application of the traditional estimation approaches is limited due to the lack of required meteorological parameters or experimental conditions. In this study, a novel hybrid model was proposed to estimate the monthly pan Ep in dryland by integrating long short-term memory (LSTM) with grey wolf optimizer (GWO) algorithm and Kendall-τ correlation coefficient, where the GWO algorithm was employed to find the optimal hyper-parameters of LSTM, and Kendall-τ correlation coefficient was used to determine the input combination of meteorological variables. The model performance was compared to the performance of other methods based on the evaluation metrics, including root mean squared error (RMSE), the normalized mean squared error (NMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), and Nash–Sutcliffe coefficient of efficiency (NSCE). The results indicated that the optimal input meteorological parameters of the hybrid Kendall-τ-GWO-LSTM models are the monthly average temperature, the minimum air temperature, the maximum air temperature, the minimum values of RMSE, NMSE, MAE, and MAPE are 38.28, 0.20, 26.62, and 19.96%, and the maximum NSCE is 0.89, suggesting that the hybrid Kendall-τ-GWO-LSTM exhibit better model performance than the other hybrid models. Thus, the hybrid Kendall-τ-GWO-LSTM model was highly recommended for estimating pan Ep with limited meteorological information in dryland. The present investigation provides a novel method to estimate the monthly pan Ep with limited meteorological variables in dryland by coupling a deep learning model with meta-heuristic algorithms and the data preprocessing techniques.

Funder

the Creative Research Groups of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3