Evaluation of highway debris flow hazard based on geomorphic evolution theory coupled with material response rate

Author:

He Na,Han Ruze,Hu Guisheng,Yang Zhiquan,Xu Linjuan,Gurkalo Filip

Abstract

AbstractAssessments of highway feasibility frequently lack the detailed data and geological information necessary to conduct hazard evaluations of debris flows. This study discusses the processes of debris flow development when regional rainfall meets the critical level required for debris flow initiation. It utilizes geomorphic evolution theory and establishes a regional risk assessment matrix for debris flow by combining information about gullies and source sensitivity. Considering the location relationship between the highway and debris flow gullies, a rapid evaluation method for debris flow risk assessment along the G318 highway in Sichuan Province is proposed by modifying the judgment matrix. The four debris flow gullies constructed during the upgrading project in Yajiang County, stretching from the west of the city to the Shearer Bay section, were analyzed via examples. The results show that, among the four selected debris flow gullies, two had medium hazard levels, and two had high hazard levels. The validation results are consistent with the actual results, implying that the evaluation method used in this study is accurate and feasible. This method is suitable for the rapid evaluation of debris flow disaster hazards in the feasibility assessment stage of a highway because it relies on readily available data sources, and the evaluation results are fast and convenient. The highway passes through four debris flow gullies, which directly impact the alignment of this particular section of the geological route and the engineering layout. Based on current specifications, the maximum impact range of a one-time debris flow under the given frequency conditions was calculated using the "rainfall method." The results showed that the maximum impact ranges of a debris flow, occurring once in 100 years, for four gullies would be 9.08 m, 9.09 m, 10.86 m, and 10.08 m. The safe clearance heights of bridges over the four gullies should be 14.58 m, 14.59 m, 16.36 m, and 16.3 m. Additionally, the safety clearance width for all gullies should be 5.0 m.

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Peng, C., Guotao, Z. & Jiao, W. A 10-year review and outlook of disaster prevention and mitigation in China[J]. Sci. Technol. Herald 41(01), 7–13 (2023).

2. Statistical Bulletin of China’s Natural Resources. In: Ministry of Natural Resources of the People’s Republic of China

3. Del Ventisette, C. et al. An integrated approach to the study of catastrophic debris-flows: Geological hazard and human influence[J]. Nat. Hazard. 12(9), 2907–2922 (2012).

4. Xiangang, J. et al. Mechanism of the “7–10” debris flow damaging the Maojiawan Bridge on Duwen Highway in Supodiangou[J]. J. Mountain Geol. 33(03), 311–317 (2015).

5. Ali, S., Haider, R., Abbas, W., et al. Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan[J]. Nat. Hazards. 1–24 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3