The characteristic analysis of phase-controlled array thermo-acoustic emission with multiple emitting surfaces

Author:

Zhang Kai,Wang Dongdong,Zhou Jiayi,Su Yulei,Ding Huaikuang,Hu Hanping,Han Yuanzhao

Abstract

AbstractThermo-acoustic (TA) ultrasound, particularly when combined with phased-controlled array technology, has garnered significant interest in the past decade due to its numerous advantages. This paper establishes a theoretical expression for thermo-acoustic phased array (TAPA) emission to investigate different acoustic fields based on input heat flow frequencies, quantities and distances of TA emission surfaces, area of emission surfaces, and phase changes between emission surfaces. The study finds that a TAPA with two emitting surfaces in a line pattern produces a consistent acoustic field compared to a single emitting surface arranged in a semicircle. Additionally, applying different phases on the surfaces narrows the scanning range with an increase in frequency, area of the TA emission surface, and the amount of emission surfaces, while enhancing the directivity of the TA wave. Moreover, increasing the distance between emitting surfaces in a square-shaped TAPA does not affect the ultrasound pressure of the main TA ultrasound but increases the quantity and size of side lobes. Furthermore, enlarging the area of emitting surfaces enhances the directivity of the TA ultrasound, necessitating a reduction in the distance between emitting surfaces or an increase in the area of the emitting surfaces in a square-shaped TAPA to enhance directivity. This paper provides a comprehensive study of TAPA to aid further research in this field.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3