Model based on the automated AI-driven CT quantification is effective for the diagnosis of refractory Mycoplasma pneumoniae pneumonia

Author:

Qian Yali,Tao Yunxi,Wu Lihui,Zhou Changsheng,Liu Feng,Xu Shenglong,Miao Hongjun,Gao Xiucheng,Ge Xuhua

Abstract

AbstractThe prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) remains a clinically significant challenge. This study aimed to develop an early predictive model utilizing artificial intelligence (AI)-derived quantitative assessment of lung lesion extent on initial computed tomography (CT) scans and clinical indicators for RMPP in pediatric inpatients. A retrospective cohort study was conducted on patients with M. pneumoniae pneumonia (MP) admitted to the Children’s Hospital of Nanjing Medical University, China from January 2019 to December 2020. An early prediction model was developed by stratifying the patients with Mycoplasma pneumoniae pneumonia (MPP) into two cohorts according to the presence or absence of refractory pneumonia. A retrospective cohort of 126 children diagnosed with Mycoplasma pneumoniae pneumonia (MPP) was utilized as a training set, with 85 cases classified as RMPP. Subsequently, a prospective cohort comprising 54 MPP cases, including 37 instances of RMPP, was assembled as a validation set to assess the performance of the predictive model for RMPP from January to December 2021. We defined a constant Φ which can combine the volume and CT value of pulmonary lesions and be further used to calculate the logarithm of Φ to the base of 2 (Log2Φ). A clinical-imaging prediction model was then constructed utilizing Log2Φ and clinical characteristics. Performance was evaluated by the area under the receiver operating characteristic curve (AUC). The clinical model demonstrated AUC values of 0.810 and 0.782, while the imaging model showed AUC values of 0.764 and 0.769 in the training and test sets, respectively. The clinical-imaging model, incorporating Log2Φ, temperature(T), aspartate aminotransferase (AST), preadmission fever duration (PFD), and preadmission macrolides therapy duration (PMTD), achieved the highest AUC values of 0.897 and 0.895 in the training and test sets, respectively. A prognostic model developed through automated quantification of lung disease on CT scans, in conjunction with clinical data in MPP may be utilized for the early identification of RMPP.

Funder

the Project of Nanjing Science and technology development Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3