Modeling of energy consumption factors for an industrial cement vertical roller mill by SHAP-XGBoost: a "conscious lab" approach

Author:

Fatahi Rasoul,Nasiri Hamid,Dadfar Ehsan,Chehreh Chelgani Saeed

Abstract

AbstractCement production is one of the most energy-intensive manufacturing industries, and the milling circuit of cement plants consumes around 4% of a year's global electrical energy production. It is well understood that modeling and digitalizing industrial-scale processes would help control production circuits better, improve efficiency, enhance personal training systems, and decrease plants' energy consumption. This tactical approach could be integrated using conscious lab (CL) as an innovative concept in the internet age. Surprisingly, no CL has been reported for the milling circuit of a cement plant. A robust CL interconnect datasets originated from monitoring operational variables in the plants and translating them to human basis information using explainable artificial intelligence (EAI) models. By initiating a CL for an industrial cement vertical roller mill (VRM), this study conducted a novel strategy to explore relationships between VRM monitored operational variables and their representative energy consumption factors (output temperature and motor power). Using SHapley Additive exPlanations (SHAP) as one of the most recent EAI models accurately helped fill the lack of information about correlations within VRM variables. SHAP analyses highlighted that working pressure and input gas rate with positive relationships are the key factors influencing energy consumption. eXtreme Gradient Boosting (XGBoost) as a powerful predictive tool could accurately model energy representative factors by R-square ever 0.80 in the testing phase. Comparison assessments indicated that SHAP-XGBoost could provide higher accuracy for VRM-CL structure than conventional modeling tools (Pearson correlation, Random Forest, and Support vector regression.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3