Elevated perfusate [Na+] increases contractile dysfunction during ischemia and reperfusion

Author:

King D. Ryan,Padget Rachel L.,Perry Justin,Hoeker Gregory,Smyth James W.,Brown David A.,Poelzing Steven

Abstract

AbstractRecent studies revealed that relatively small changes in perfusate sodium ([Na+]o) composition significantly affect cardiac electrical conduction and stability in contraction arrested ex vivo Langendorff heart preparations before and during simulated ischemia. Additionally, [Na+]o modulates cardiomyocyte contractility via a sodium-calcium exchanger (NCX) mediated pathway. It remains unknown, however, whether modest changes to [Na+]o that promote electrophysiologic stability similarly improve mechanical function during baseline and ischemia–reperfusion conditions. The purpose of this study was to quantify cardiac mechanical function during ischemia–reperfusion with perfusates containing 145 or 155 mM Na+ in Langendorff perfused isolated rat heart preparations. Relative to 145 mM Na+, perfusion with 155 mM [Na+]o decreased the amplitude of left-ventricular developed pressure (LVDP) at baseline and accelerated the onset of ischemic contracture. Inhibiting NCX with SEA0400 abolished LVDP depression caused by increasing [Na+]o at baseline and reduced the time to peak ischemic contracture. Ischemia–reperfusion decreased LVDP in all hearts with return of intrinsic activity, and reperfusion with 155 mM [Na+]o further depressed mechanical function. In summary, elevating [Na+]o by as little as 10 mM can significantly modulate mechanical function under baseline conditions, as well as during ischemia and reperfusion. Importantly, clinical use of Normal Saline, which contains 155 mM [Na+]o, with cardiac ischemia may require further investigation.

Funder

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3