Development and testing of diagnostic algorithms to identify patients with acromegaly in Southern Italian claims databases

Author:

Crisafulli Salvatore,Fontana Andrea,L’Abbate Luca,Ientile Valentina,Gianfrilli Daniele,Cozzolino Alessia,De Martino Maria Cristina,Ragonese Marta,Sultana Janet,Barone-Adesi Francesco,Trifirò Gianluca

Abstract

AbstractAcromegaly is a rare disease characterized by an excessive production of growth-hormone and insulin-like growth factor 1, typically resulting from a GH-secreting pituitary adenoma. This study was aimed at comparing and measuring accuracy of newly and previously developed coding algorithms for the identification of acromegaly using Italian claims databases. This study was conducted between January 2015 and December 2018, using data from the claims databases of Caserta Local Health Unit (LHU) and Sicily Region in Southern Italy. To detect acromegaly cases from the general target population, four algorithms were developed using combinations of diagnostic, surgical procedure and co-payment exemption codes, pharmacy claims and specialist’s visits. Algorithm accuracy was assessed by measuring the Youden Index, sensitivity, specificity, positive and negative predictive values. The percentage of positive cases for each algorithm ranged from 7.9 (95% CI 6.4–9.8) to 13.8 (95% CI 11.7–16.2) per 100,000 inhabitants in Caserta LHU and from 7.8 (95% CI 7.1–8.6) to 16.4 (95% CI 15.3–17.5) in Sicily Region. Sensitivity of the different algorithms ranged from 71.1% (95% CI 54.1–84.6%) to 84.2% (95% CI 68.8–94.0%), while specificity was always higher than 99.9%. The algorithm based on the presence of claims suggestive of acromegaly in ≥ 2 different databases (i.e., hospital discharge records, copayment exemptions registry, pharmacy claims and specialist visits registry) achieved the highest Youden Index (84.2) and the highest positive predictive value (34.8; 95% CI 28.6–41.6). We tested four algorithms to identify acromegaly cases using claims databases with high sensitivity and Youden Index. Despite identifying rare diseases using real-world data is challenging, this study showed that robust validity testing may yield the identification of accurate coding algorithms.

Funder

Ministero dell'Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3