Unravelling the effect of droplet size on lipid oxidation in O/W emulsions by using microfluidics

Author:

ten Klooster Sten,Boerkamp Vincent J. P.,Hennebelle Marie,van Duynhoven John P. M.,Schroën Karin,Berton-Carabin Claire C.

Abstract

AbstractLipid oxidation in emulsions is hypothesised to increase with decreasing droplet size, as this increases the specific oil–water interfacial area, where lipid oxidation is expected to be initiated. In literature, however, contradictory results have been reported, which can be caused by confounding factors such as the oil droplet polydispersity and the distribution of components between the available phases. In this work, monodisperse surfactant-stabilised emulsions with highly controlled droplet sizes of 4.7, 9.1, and 26 µm were produced by microfluidic emulsification. We show that lipid oxidation increases with decreasing droplet size, which we ascribe to the increased contact area between lipids and continuous phase prooxidants. Besides, a significant amount of oxygen was consumed by oxidation of the surfactant itself (Tween 20), an effect that also increased with decreasing droplet size. These insights substantiate the importance of controlling droplet size for improving the oxidative stability of emulsions.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3