Author:
Thananukul Kamonchanok,Kaewsaneha Chariya,Opaprakasit Pakorn,Zine Nadia,Elaissari Abdelhamid
Abstract
AbstractStimuli-responsive controlled delivery systems are of interest for preventing premature leakages and ensuring precise releases of active compounds at target sites. In this study, porous biodegradable micro/nanoparticles embedded with thermoresponsive gatekeepers are designed and developed based on Eudragit RS100 (PNIPAM@RS100) and poly(N-isopropylacrylamide) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer/methylene-bis-acrylamide (MBA) crosslinker was investigated at 60 °C for thermal initiators and ambient temperature for redox initiators. The crosslinked PNIPAM plays a key role as thermal-triggered gatekeepers with high loading efficiency and precise release of a model active compound, Nile Blue A (NB). Below the volume phase transition temperature (TVPT), the gatekeepers possess a swollen conformation to block the pores and store NB within the cavities. Above its TVPT, the chains rearrange, allowing gate opening and a rapid and constant release rate of the compound until completion. A precise “on–off” switchable release efficiency of PNIPAM@RS100 was demonstrated by changing the temperatures to 4 and 40 °C. The materials are a promising candidate for controlled drug delivery systems with a precise and easy triggering mechanism at the body temperature for effective treatments.
Funder
The Royal Golden Jubilee (RGJ) Ph.D. program of the National Research Council of Thailand
The Center of Excellence in Materials and Plasma Technology (CoE M@P Tech), Thammasat University
The National Research Council of Thailand (NRCT), the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献