Author:
Shuryak Igor,Brenner David J.
Abstract
AbstractStress response signals can propagate between cells damaged by targeted effects (TE) of ionizing radiation (e.g. energy depositions and ionizations in the nucleus) and undamaged “bystander” cells, sometimes over long distances. Their consequences, called non-targeted effects (NTE), can substantially contribute to radiation-induced damage (e.g. cell death, genomic instability, carcinogenesis), particularly at low doses/dose rates (e.g. space exploration, some occupational and accidental exposures). In addition to controlled laboratory experiments, analysis of observational data on wild animal and plant populations from areas contaminated by radionuclides can enhance our understanding of radiation responses because such data span wide ranges of dose rates applied over many generations. Here we used a mechanistically-motivated mathematical model of TE and NTE to analyze published embryonic mortality data for plants (Arabidopsis thaliana) and rodents (Clethrionomys glareolus) from the Chernobyl nuclear power plant accident region. Although these species differed strongly in intrinsic radiosensitivities and post-accident radiation exposure magnitudes, model-based analysis suggested that NTE rather than TE dominated the responses of both organisms to protracted low-dose-rate irradiation. TE were predicted to become dominant only above the highest dose rates in the data. These results support the concept of NTE involvement in radiation-induced health risks from chronic radiation exposures.
Funder
National Aeronautics and Space Administration
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献