Copper laser patterning on a flexible substrate using a cost-effective 3D printer

Author:

Chakraborty Sajal,Park Ho-Yeol,Ahn Sung Il

Abstract

AbstractWe studied the cost effective direct laser patterning of copper (Cu) on thin polyimide substrates (PI thickness: 12.5–50 µm) using a 405 nm laser module attached to an inexpensive 3D printer. The focal length of the laser was intentionally controlled to reduce defects on patterned Cu and surface damage of PI under predetermined process conditions. The appropriate focal length was examined at various focal distances. Focal distances of − 2.4 mm and 3 mm were found for the shorter focal length (SFL) and longer focal length (LFL), respectively, compared to the actual focal length. This resulted in clean Cu line patterns without line defects. Interestingly, the SFL case had a different Cu growth pattern to that of LFL, indicating that the small difference in the laser incident angle could affect Cu precursor sintering. Cu square patterns had a lower resistivity of 70 μΩ·cm for an LFL after three or four laser scans, while the SFL showed a resistivity below 48 μΩ·cm for a one-time laser scan. The residues of the Cu precursor on PI were easily removed with flowing water and normal surfactants. However, the resistivity of the patterns decreased after cleaning. Among the scan gaps, the Cu square pattern formed at a 70 μm scan gap had the lowest sheet resistance and the least change in resistance from around 4 to 4.4 Ω/ϒ after cleaning. This result implies that the adhesion of the patterned Cu could be improved if the coated Cu precursor was well sintered under the proper process conditions. For the application of this method to bioelectronics, including biosensors, LEDs were connected to the Cu patterns on PI attached to the arm skin and worked well, even when the substrate PI was bent during power connecting.

Funder

Basic Science Research Program through the National Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3