Author:
Fazlyab Ali Reza,Fani Saberi Farhad,Kabganian Mansour
Abstract
AbstractIn this paper, a robust attitude control algorithm is developed based on backstepping sliding mode control for a satellite using reaction wheels and thrusters that can perform its mission despite faulty actuators. In this method, the actuator dynamics have been considered to design the controller and the asymptotic stability of the proposed algorithm has been proven based on the Lyapunov theory. The designed controller can converge the attitude of the system into the desired path in the presence of faulty actuators. Then a fault-tolerant attitude estimation system is designed based on federated unscented Kalman filters that can be effectively employed to detect and isolate sensor faults. Finally, the performance of the designed attitude estimation and controller is investigated by simulation in the presence of both actuator and sensor faults.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献