Mapping roadless areas in regions with contrasting human footprint

Author:

Hoffmann Monika T.,Ostapowicz Katarzyna,Bartoń Kamil,Ibisch Pierre L.,Selva Nuria

Abstract

AbstractIn an increasingly human- and road-dominated world, the preservation of functional ecosystems has become highly relevant. While the negative ecological impacts of roads on ecosystems are numerous and well documented, roadless areas have been proposed as proxy for functional ecosystems. However, their potential remains underexplored, partly due to the incomplete mapping of roads. We assessed the accuracy of roadless areas identification using freely available road-data in two regions with contrasting levels of anthropogenic influence: boreal Canada and temperate Central Europe (Poland, Slovakia, Czechia, and Hungary). Within randomly selected circular plots (per region and country), we visually examined the completeness of road mapping using OpenStreetMap 2020 and assessed whether human influences affect mapping quality using four variables. In boreal Canada, roads were completely mapped in 3% of the plots, compared to 40% in Central Europe. Lower Human Footprint Index and road density values were related to greater incompleteness in road mapping. Roadless areas, defined as areas at least 1 km away from any road, covered 85% of the surface in boreal Canada (mean size ± s.d. = 272 ± 12,197 km2), compared to only 0.4% in temperate Central Europe (mean size ± s.d. = 0.6 ± 3.1 km2). By visually interpreting and manually adding unmapped roads in 30 randomly selected roadless areas from each study country, we observed a similar reduction in roadless surface in both Canada and Central Europe (27% vs 28%) when all roads were included. This study highlights the urgent need for improved road mapping techniques to support research on roadless areas as conservation targets and surrogates of functional ecosystems.

Funder

Narodowym Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3