Extended Kalman filter algorithm for non-roughness and moving damage identification

Author:

Ding Hong-li,Zhang Chun,Gao Yu-wei,Huang Jin-peng

Abstract

AbstractIt is a promising method to identify structural damage using bridge dynamic response under moving vehicle excitation, but the lack of accurate information about road roughness and vehicle parameters will lead to the failure of this method. The paper proposed a step-by-step EKF damage identification method, which transforms the inversion problem of unknown structural parameters under unknown loads (vehicle and road roughness) into two separate inversion problems: moving contact force identification and damage parameters identification. Firstly, the VBI model is converted into bridge vibration model under a moving contact force, and the moving contact force covering the information of road roughness and vehicle parameters can be calculated by EKF iteration. Secondly, the moving contact force identified in the first step is loaded on the bridge as a known condition, and the bridge damage problem is also solved by the EKF method. Numerical analyses of a simply-supported bridge under the moving vehicle are conducted to investigate the accuracy and efficiency of the proposed method. Effects of the vehicle speed, the damage cases, the measurement noise, and the roughness levels on the accuracy of the identification results are investigated. The results demonstrate the proposed algorithm is efficient and robust, and the algorithm can be developed into an effective tool for structural health monitoring of bridges.

Funder

National Natural Science Foundation of China

The Natural Science Foundation of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3