Author:
Chung Hyeongju,Kim Daeik,Sawant Ashwini,Lee Ingeun,Choi Eunmi,Lee Jongwon
Abstract
AbstractVortex beams carrying orbital angular momentum (OAM) have attracted considerable attention for the development of high-capacity wireless communication systems due to their infinite sets of orthogonal modes. However, the practical applications of Laguerre-Gaussian type vortex beams are limited due to the fact that the divergence angle increases as the order of the OAM mode increases. In this work, we present metasurfaces that generate vortex beams carrying OAM modes with reduced divergence angles in the E-band frequency range. The metasurfaces were designed using eight different meta-atom phase elements, including a spiral phase distribution for OAM modes l = 1 and 2, a phase gradient array to avoid interference with the source beam, and a lens pattern array to reduce the divergence angle. Through simulation and experimental measurement, it was confirmed that the divergence angle of the vortex beam generated by the metasurface with the lens pattern was reduced from 13° to 9° and 14° to 11° for OAM modes l = 1 and 2, respectively, in comparison with the metasurface without the lens pattern. Our results provide new design methods for various applications based on OAM multiplexing especially in high frequency E-band range.
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献