Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi

Author:

Daghino Stefania,Martino Elena,Voyron Samuele,Perotto Silvia

Abstract

AbstractPlants harbor in their external surfaces and internal tissues a highly diverse and finely structured microbial assembly, the microbiota. Each plant compartment usually represents a unique ecological niche hosting a distinct microbial community and niche differentiation, which may mirror distinct functions of a specialized microbiota, has been mainly investigated for bacteria. Far less is known for the fungal components of the plant-associated microbiota. Here, we applied a metabarcoding approach to describe the fungal assemblages in different organs of Vaccinium myrtillus plants (Ericaceae) collected in a subalpine meadow in North-West Italy, and identified specific taxa enriched in internal tissues of roots, stems, leaves and flowers. We also traced the distribution of some important fungi commonly associated with plants of the family Ericaceae, namely the ericoid mycorrhizal (ErM) fungi and the dark septate endophytes (DSE), both playing important roles in plant growth and health. Operational taxonomic units attributed to established ErM fungal species in the genus Hyaloscypha and to DSE species in the Phialocephala-Acephala applanata complex (PAC) were found in all the plant organs. Mycorrhizal fungi are thought to be strictly associated with the plant roots, and this first observation of ErM fungi in the above-ground organs of the host plant may be explained by the evolutionary closeness of ErM fungi in the genus Hyaloscypha with non mycorrhizal fungal endophytes. This is also witnessed by the closer similarities of the ErM fungal genomes with the genomes of plant endophytes than with those of other mycorrhizal fungi, such as arbuscular or ectomycorrhizal fungi.

Funder

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3