Predicting the stereoselectivity of chemical reactions by composite machine learning method

Author:

Chung Jihoon,Li Justin,Saimon Amirul Islam,Hong Pengyu,Kong Zhenyu

Abstract

AbstractStereoselective reactions have played a vital role in the emergence of life, evolution, human biology, and medicine. However, for a long time, most industrial and academic efforts followed a trial-and-error approach for asymmetric synthesis in stereoselective reactions. In addition, most previous studies have been qualitatively focused on the influence of steric and electronic effects on stereoselective reactions. Therefore, quantitatively understanding the stereoselectivity of a given chemical reaction is extremely difficult. As proof of principle, this paper develops a novel composite machine learning method for quantitatively predicting the enantioselectivity representing the degree to which one enantiomer is preferentially produced from the reactions. Specifically, machine learning methods that are widely used in data analytics, including Random Forest, Support Vector Regression, and LASSO, are utilized. In addition, the Bayesian optimization and permutation importance tests are provided for an in-depth understanding of reactions and accurate prediction. Finally, the proposed composite method approximates the key features of the available reactions by using Gaussian mixture models, which provide suitable machine learning methods for new reactions. The case studies using the real stereoselective reactions show that the proposed method is effective and provides a solid foundation for further application to other chemical reactions.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3