Application of power-law committee machine to combine five machine learning algorithms for enhanced oil recovery screening

Author:

Yousefzadeh Reza,Kazemi Alireza,Al-Maamari Rashid S.

Abstract

AbstractOne of the main challenges in screening of enhanced oil recovery (EOR) techniques is the class imbalance problem, where the number of different EOR techniques is not equal. This problem hinders the generalization of the data-driven methods used to predict suitable EOR techniques for candidate reservoirs. The main purpose of this paper is to propose a novel approach to overcome the above challenge by taking advantage of the Power-Law Committee Machine (PLCM) technique optimized by Particle Swam Optimization (PSO) to combine the output of five cutting-edge machine learning methods with different types of learning algorithms. The PLCM method has not been used in previous studies for EOR screening. The machine learning models include the Artificial Neural Network (ANN), CatBoost, Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The CatBoost is used for the first time in this work for screening of EOR methods. The role of the PSO is to find the optimal values for the coefficients and exponents of the power-law model. In this study, a bigger dataset than those in previous studies, including 2563 successful worldwide EOR experiences, was gathered. A bigger dataset improves the generalization of the data-driven methods and prevents overfitting. The hyperparameters of the individual machine-learning models were tuned using the fivefold cross-validation technique. The results showed that all the individual methods could predict the suitable EOR method for unseen cases with an average score of 0.868. Among the machine learning models, the KNN and SVM had the highest scores with a value of 0.894 and 0.892, respectively. Nonetheless, after combining the output of the models using the PLCM method, the score of the predictions improved to 0.963, which was a substantial increase. Finally, a feature importance analysis was conducted to find out the most influential parameters on the output. The novelty of this work is having shown the ability of the PLCM technique to construct an accurate model to overcome the class-imbalance issue in EOR screening by utilizing different types of data-driven models. According to feature importance analysis, oil gravity and formation porosity were recognized as the most influential parameters on EOR screening.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3