Penetration and ligament formation of viscoelastic droplets impacting on the superhydrophobic mesh

Author:

Mehrizi Abbasali Abouei,Lin Shiji,Sun Lijie,Wang Yile,Chen Longquan

Abstract

AbstractSpraying occurs by the impact of water droplets on the superhydrophobic wire meshes by liquid penetration during the spreading and recoiling. We have shown that adding a small amount of high molecular weight polymer (PEO) alters the ligaments formation and stabilizes them due to its high elasticity. Consequently, it suppresses droplet spray during droplet spreading and recoiling (recoil penetration). In the wide range of the impact velocities, the penetrated ligaments retracted back to the mesh after reaching the maximum length and eventually merged with the droplet on the mesh. The empirical fitting shows that the ligament evolution follows the parallel spring-dashpot model of Kelvin–Voigt. The additive polymer also changes the recoil penetration mechanisms from cavity collapse to cavity detachment due to the higher retraction velocity of the cavity near the mesh that is induced by the upward flow formed by the retraction of the ligaments to the mother droplet. A model based on mass conservation is proposed to calculate the variation of the maximum ligament size.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3