Author:
Huang Haixin,Wang Yuyao,Cai Mingqi,Wang Ruipeng,Wen Feng,Hu Xiaojie
Abstract
AbstractThe research on video analytics especially in the area of human behavior recognition has become increasingly popular recently. It is widely applied in virtual reality, video surveillance, and video retrieval. With the advancement of deep learning algorithms and computer hardware, the conventional two-dimensional convolution technique for training video models has been replaced by three-dimensional convolution, which enables the extraction of spatio-temporal features. Specifically, the use of 3D convolution in human behavior recognition has been the subject of growing interest. However, the increased dimensionality has led to challenges such as the dramatic increase in the number of parameters, increased time complexity, and a strong dependence on GPUs for effective spatio-temporal feature extraction. The training speed can be considerably slow without the support of powerful GPU hardware. To address these issues, this study proposes an Adaptive Time Compression (ATC) module. Functioning as an independent component, ATC can be seamlessly integrated into existing architectures and achieves data compression by eliminating redundant frames within video data. The ATC module effectively reduces GPU computing load and time complexity with negligible loss of accuracy, thereby facilitating real-time human behavior recognition.
Funder
National Key Research and Development Projects
2020 Program for Liaoning Excellent Talents (LNET) in University
Publisher
Springer Science and Business Media LLC