Author:
Mehrooz Nafiseh,Gharibshahi Reza,Jafari Arezou,Shadan Behrad,Delavari Hamid,Sadeghnejad Saeid
Abstract
AbstractThis project investigated the impact of low-temperature, in-situ synthesis of cerium oxide (CeO2) nanoparticles on various aspects of oil recovery mechanisms, including changes in oil viscosity, alterations in reservoir rock wettability, and the resulting oil recovery factor. The nanoparticles were synthesized using a microemulsion procedure and subjected to various characterization analyses. Subsequently, these synthesized nanoparticles were prepared and injected into a glass micromodel, both in-situ and ex-situ, to evaluate their effectiveness. The study also examined the movement of the injected fluid within the porous media. The results revealed that the synthesized CeO2 nanoparticles exhibited a remarkable capability at low temperatures to reduce crude oil viscosity by 28% and to lighten the oil. Furthermore, the addition of CeO2 nanoparticles to the base fluid (water) led to a shift in the wettability of the porous medium, resulting in a significant reduction in the oil drop angle from 140° to 20°. Even a minimal presence of CeO2 nanoparticles (0.1 wt%) in water increased the oil production factor from 29 to 42%. This enhancement became even more pronounced at a concentration of 0.5 wt%, where the oil production factor reached 56%. Finally, it was found that the in-situ injection, involving the direct synthesis of CeO2 nanoparticles within the reservoir using precursor salts solution and reservoir energy, led to an 11% enhancement in oil production efficiency compared to the ex-situ injection scenario, where the nanofluid is prepared outside the reservoir and then injected into it.
Publisher
Springer Science and Business Media LLC