Author:
Meraj Sanam,Dhari Arshvir Singh,Mohr Emerson,Lowenberger Carl,Gries Gerhard
Abstract
AbstractThe hematophagous common bed bug, Cimex lectularius, is not known to transmit human pathogens outside laboratory settings, having evolved various immune defense mechanisms including the expression of antimicrobial peptides (AMPs). We unveil three novel prolixicin AMPs in bed bugs, exhibiting strong homology to the prolixicin of kissing bugs, Rhodnius prolixus, and to diptericin/attacin AMPs. We demonstrate for the first time sex-specific and immune mode-specific upregulation of these prolixicins in immune organs, the midgut and rest of body, following injection and ingestion of Gr+ (Bacillus subtilis) and Gr– (Escherichia coli) bacteria. Synthetic CL-prolixicin2 significantly inhibited growth of E. coli strains and killed or impeded Trypanosoma cruzi, the Chagas disease agent. Our findings suggest that prolixicins are regulated by both IMD and Toll immune pathways, supporting cross-talk and blurred functional differentiation between major immune pathways. The efficacy of CL-prolixicin2 against T. cruzi underscores the potential of AMPs in Chagas disease management.
Funder
Alexander Graham Bell Scholarship from the Natural Sciences and Engineering Research Council of Canada
ESBC Graduate Student Scholarship
Philip & Marian McClelland Scholarship
Undergraduate Student Research Award
NSERC – Discovery Grants
NSERC – Industrial Research Chair
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献