Author:
Singh Sanjeet Kumar,Prakash Om,Bhattacharya Shantanu
Abstract
AbstractThe proposed work enumerates a hybrid thin, deep-subwavelength (2 cm) acoustic metamaterials acting as a completely new type of sound absorber, showing multiple broadband sound absorption effects. Based on the fractal distribution of Helmholtz resonator (HRs) structures, integrated with careful design and construct hybrid cross micro-perforated panel (CMPP) that demonstrate broad banding approximately one-octave low-frequency sound absorption behavior. To determine the sound absorption coefficient of this novel type of metamaterial, the equivalent impedance model for the fractal cavity and the micro-perforated Maa’s model for CMPP are both used. We validate these novel material designs through numerical, theoretical, and experimental data. It is demonstrated that the material design possesses superior sound absorption which is primarily due to the frictional losses of the structure imposed on acoustic wave energy. The peaks of different sound absorption phenomena show tunability by adjusting the geometric parameters of the fractal structures like cavity thickness ‘t’, cross perforation diameter of micro perforated panel, etc. The fractal structures and their perforation panel are optimized dimensionally for maximum broadband sound absorption which is estimated numerically. This new kind of fractals cavity integrated with CMPP acoustic metamaterial has many applications as in multiple functional materials with broad-band absorption behavior etc.
Funder
Boeing international corporation india private limited
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献