Author:
Elkhouly Abeer,Andrew Allan Melvin,Rahim Hasliza A,Abdulaziz Nidhal,Malek Mohd Fareq Abd,Siddique Shafiquzzaman
Abstract
AbstractAudiograms are used to show the hearing capability of a person at different frequencies. The filter bank in a hearing aid is designed to match the shape of patients’ audiograms. Configuring the hearing aid is done by modifying the designed filters’ gains to match the patient’s audiogram. There are few problems faced in achieving this objective successfully. There is a shortage in the number of audiologists; the filter bank hearing aid designs are complex; and, the hearing aid fitting process is tiring. In this work, a machine learning solution is introduced to classify the audiograms according to the shapes based on unsupervised spectral clustering. The features used to build the ML model are peculiar and describe the audiograms better. Different normalization methods are applied and studied statistically to improve the training data set. The proposed Machine Learning (ML) algorithm outperformed the current existing models, where, the accuracy, precision, recall, specificity, and F-score values are higher. The reason for the better performance is the use of multi-stage feature selection to describe the audiograms precisely. This work introduces a novel ML technique to classify audiograms according to the shape, which, can be integrated to the future and existing studies to change the existing practices in classifying audiograms.
Funder
Universiti Malaysia Sabah graduate students scheme
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. (WHO) W. H. O. Deafness and hearing loss. World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (2022).
2. Bagozzi, D. Who calls on private sector to provide affordable hearing aids in developing world. WHO International. https://www.who.int/news/item/11-07-2001-who-calls-on-private-sector-to-provide-affordable-hearing-aids-in-developing-world (2021).
3. Whelan, C. What to know about hearing aid costs. Healthline. https://www.healthline.com/health/cost-of-hearing-aids#a-quick-look-at-costs (2022).
4. Girish, G. K. & Pinjare, S. L. Audiogram equalizer using fast Fourier transform. In 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) (2016).
5. Charih, F., Bromwich, M., Mark, A. E., Lefrancois, R. & Green, J. R. Data-driven audiogram classification for mobile audiometry. Scie. Rep. 10(1), 3962. https://doi.org/10.1038/s41598-020-60898-3 (2020).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献