Nature of novel criticality in ternary transition-metal oxides

Author:

Abdulvagidov Shapiullah B.,Djabrailov Shamil Z.,Abdulvagidov Belal Sh.

Abstract

AbstractThere are the chains of transition-metal cations alternating with the anions of oxygen in ternary transition-metal oxides. When a p-orbital of the oxygen connects the half-filled and empty d-orbitals of adjacent transition-metal cations, double-exchange ferromagnetism takes place. Although double exchange has been well explored, the nature of novel criticality, induced by it, is yet not uncovered. We explored the magnetic-field scaling in the heat capacity of a Sm0.55Sr0.45MnO3 manganite, one of the best ternary transition-metal oxides as it is completely ferromagnetic, and found novel criticality - unordinary critical exponents which are the consequence of coherence of Coulomb lattice distortion and ferromagnetism. The coherence is caused by the trinity of the mass, the charge and the spin of an electron. When the d and p orbitals overlaps, it quickly walks from one site to the another due its lightest mass. And due to its electric charge, it equalizes the valences of the transition-metal cations in the chains and so diminishes the Coulomb lattice distortion. At last, its spin forces magnetic moments of transition-metal cations to ferromagnetically arrange. The disappearance of Coulomb distortions widens the overlap and lowers the elastic lattice energy, so that not only the spin of an electron, but also its electric charge strengthens ferromagnetism. That nonlinear effect strengthens the critical behaviour and critical exponents come off any known universality classes. Thus, the symbiotic coherence of annihilating Coulomb distortions and arising ferromagnetism is a reason of the novel criticality.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3