Reliability prediction and evaluation of communication base stations in earthquake prone areas

Author:

Li Xueming,Wei Yao,Ming Zheng,Cong Hao,Zheng Xuanyu,Chang Qihai

Abstract

AbstractOne of the primary tasks for effective disaster relief after a catastrophic earthquake is robust communication. In this paper, we propose a simple logistic method based on two-parameter sets of geology and building structure for the failure prediction of the base stations in post-earthquake. Using the post-earthquake base station data in Sichuan, China, the prediction results are 96.7% and 90% for the two-parameter sets and all parameter sets, respectively, and 93.3% for the neural network method sets. The results show that the two-parameter method outweighs the whole parameter set logistic method and the neural network prediction and can effectively improve the accuracy of the prediction. The weight parameters of two-parameter set by the actual field data significantly show that the failure of base stations after earthquake is mainly due to the geological differences where the base stations are located. It can be envisioned that if the geological distribution between the earthquake source and the base station is parameterized, the multi-parameter sets logistic method can not only effectively solve the failure prediction after earthquakes and the evaluation of communication base stations under complex conditions, but also provide site selection evaluation for the construction of civil buildings and power grid towers in earthquake-prone areas.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3