Vegetable disease detection using an improved YOLOv8 algorithm in the greenhouse plant environment

Author:

Wang Xuewei,Liu Jun

Abstract

AbstractThis study introduces YOLOv8n-vegetable, a model designed to address challenges related to imprecise detection of vegetable diseases in greenhouse plant environment using existing network models. The model incorporates several improvements and optimizations to enhance its effectiveness. Firstly, a novel C2fGhost module replaces partial C2f. with GhostConv based on Ghost lightweight convolution, reducing the model’s parameters and improving detection performance. Second, the Occlusion Perception Attention Module (OAM) is integrated into the Neck section to better preserve feature information after fusion, enhancing vegetable disease detection in greenhouse settings. To address challenges associated with detecting small-sized objects and the depletion of semantic knowledge due to varying scales, an additional layer for detecting small-sized objects is included. This layer improves the amalgamation of extensive and basic semantic knowledge, thereby enhancing overall detection accuracy. Finally, the HIoU boundary loss function is introduced, leading to improved convergence speed and regression accuracy. These improvement strategies were validated through experiments using a self-built vegetable disease detection dataset in a greenhouse environment. Multiple experimental comparisons have demonstrated the model's effectiveness, achieving the objectives of improving detection speed while maintaining accuracy and real-time detection capability. According to experimental findings, the enhanced model exhibited a 6.46% rise in mean average precision (mAP) over the original model on the self-built vegetable disease detection dataset under greenhouse conditions. Additionally, the parameter quantity and model size decreased by 0.16G and 0.21 MB, respectively. The proposed model demonstrates significant advancements over the original algorithm and exhibits strong competitiveness when compared with other advanced object detection models. The lightweight and fast detection of vegetable diseases offered by the proposed model presents promising applications in vegetable disease detection tasks.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3