Precise and automated lung cancer cell classification using deep neural network with multiscale features and model distillation

Author:

Tian Lan,Wu Jiabao,Song Wanting,Hong Qinghuai,Liu Di,Ye Fei,Gao Feng,Hu Yue,Wu Meijuan,Lan Yi,Chen Limin

Abstract

AbstractLung diseases globally impose a significant pathological burden and mortality rate, particularly the differential diagnosis between adenocarcinoma, squamous cell carcinoma, and small cell lung carcinoma, which is paramount in determining optimal treatment strategies and improving clinical prognoses. Faced with the challenge of improving diagnostic precision and stability, this study has developed an innovative deep learning-based model. This model employs a Feature Pyramid Network (FPN) and Squeeze-and-Excitation (SE) modules combined with a Residual Network (ResNet18), to enhance the processing capabilities for complex images and conduct multi-scale analysis of each channel's importance in classifying lung cancer. Moreover, the performance of the model is further enhanced by employing knowledge distillation from larger teacher models to more compact student models. Subjected to rigorous five-fold cross-validation, our model outperforms existing models on all performance metrics, exhibiting exceptional diagnostic accuracy. Ablation studies on various model components have verified that each addition effectively improves model performance, achieving an average accuracy of 98.84% and a Matthews Correlation Coefficient (MCC) of 98.83%. Collectively, the results indicate that our model significantly improves the accuracy of disease diagnosis, providing physicians with more precise clinical decision-making support.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer;Indian Journal of Surgical Oncology;2024-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3