Simulation of hybridized nanofluids flowing and heat transfer enhancement via 3-D vertical heated plate using finite element technique

Author:

Hafeez Muhammad Bilal,Krawczuk Marek,Shahzad Hasan,Pasha Amjad Ali,Adil Mohammad

Abstract

AbstractThe present study probed the creation of heat energy and concentrating into Newtonian liquids across vertical 3D-heated plates. The role of the Soret and Dufour theories in concentrating and energy formulas is discussed. The role of hybrid nanoparticles is introduced to illustrate particle efficiency in terms of solute and thermal energy. It is removed a viscous dissipation process and a changing magnetic field. The proposed approach is motivated by the need to maximize solute and thermal energy uses in biological and industrial domains. The constructed system of (partial differential equations) PDEs includes concentration, momentum, and thermal energy equations within various thermal characteristics. Transformations are used to formulate the system of (ordinary differential equations) ODEs for solution. To assess various features vs various variables, a Galerkin finite element approach is used. Motion into nanoscale components is shown to be smaller than motion into hybrid nanoparticles. Furthermore, fluctuations in heat energy and solute particle counts are seen in relation to changes in Soret, Eckert, magnetic, and Dufour numbers. The basic finding is that the generation of thermal energy for hybridized nanomaterials is much higher.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference77 articles.

1. Bergman, T. L., Lavine, A. S., Incropera, F. P. & DeWitt, D. P. Introduction to Heat Transfer (John Wiley & Sons, Hoboken, 2011).

2. Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M. & Lefebvre, A. Importance of heat transfer phenomena in small turbochargers for passenger car applications. SAE Int. J. Engines 6(2), 716–728 (2013).

3. Zhang, H. & Zhuang, J. Research, development and industrial application of heat pipe technology in China. Appl. Therm. Eng. 23(9), 1067–1083 (2003).

4. Ramesh, K. N., Sharma, T. K. & Rao, G. A. P. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: A review. Arch. Comput. Methods Eng. 28(4), 3135–3165 (2021).

5. Zahra, E., Sheikholeslami, M., Farshad, S. A. & Shafee, A. Radiation heat transfer within a solar system considering nanofluid flow inside the absorber tube. Int. J. Numer. Methods Heat Fluid Flow 32(2), 469–487 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3