Hypomethylation of the DAZ3 promoter in idiopathic asthenospermia: a screening tool for liquid biopsy

Author:

Zhang Shichang,Xu Li,Yu Mengyao,Zhang Jiexin

Abstract

AbstractGiven the role of the deleted in azoospermia gene in male infertility, whether the somatic deleted in azoospermia methylation status is associated with idiopathic asthenospermia should be determined. To investigate the methylation levels of the deleted in azoospermia promoter in peripheral white blood cells from idiopathic asthenospermia patients relative to those in normozoospermia controls, 61 ethylene diamine tetraacetic acid anticoagulant blood samples were drawn from all participants for DNA isolation. The deleted in azoospermia promoter methylation ratio was detected by MassARRAY-based methylation quantification and confirmed by quantitative methylation-specific polymerase chain reaction. A MassARRAY-based methylation analysis showed that the deleted in azoospermia 3 promoter (0 to − 2 kbp) was significantly hypomethylated in peripheral white blood cells from idiopathic asthenospermia males, specifically one CpG site (− 246 to − 247). Quantitative methylation-specific polymerase chain reaction data further confirmed that the methylation level of the deleted in azoospermia 3 promoter region in idiopathic asthenospermia patients was significantly lower than that in normozoospermia males. The area under the receiver operating characteristic curve determined by quantitative methylation-specific polymerase chain reaction was 0.737 (95% confidence interval: 0.552 to 0.924), with a sensitivity of 53.9% and a specificity of 88.2% at a cut-off level of 74.7%. Therefore, our results suggested that methylation ratio detection of the deleted in azoospermia 3 promoter region by real-time polymerase chain reaction assay is a promising and feasible tool for liquid biopsy in the clinical laboratories. The methylation status of other reported infertility-related genes should also be investigated in peripheral white blood cells.

Funder

National Natural Science Foundation of China

Key Laboratory for Laboratory Medicine of Jiangsu Province of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3