Abstract
AbstractExploitation of fisheries and aquaculture practices are exposing marine fish populations to increasing genetic risks. Therefore, the integration of genetic information into fisheries and aquaculture management is becoming crucial to ensure species’ long-term persistence. The raising commercial value of grey mullet (Mugil cephalus) and its roe represents a growing challenge to the sustainable management of this economically important fishery resource. Here, microsatellites were used to investigate patterns of genetic variation in a Mediterranean area that harbor flourishing fisheries and practice semi-intensive farming of grey mullet. Genetic diversity within populations is smaller than values reported in previous studies as a result of the lower polymorphism displayed by the new microsatellite loci. Lack of genetic structuring points to the existence of a unique genetic stock, which is consistent with the species’ high dispersal capabilities. Nonetheless, differences in local population effective size as well as the excess of related individuals do not completely fit the picture of a large panmictic population. Baseline genetic information here gathered will allow to set up the genetic monitoring of regional fish stocks, which is needed to assess the impact of both harvesting and aquaculture on the genetic integrity of Mugil cephalus wild populations.
Publisher
Springer Science and Business Media LLC
Reference76 articles.
1. Garibaldi, L. The FAO global capture production database: A six-decade effort to catch the trend. Mar. Pol. 36, 760–768 (2012).
2. FAO (Food and Agriculture Organization). The State of World Fisheries and Aquaculture 2018. in Meeting The Sustainable Development Goals. (FAO, Rome, 2018).
3. Grant, W. S., Jasper, J., Bekkevold, D. & Adkison, M. Responsible genetic approach to stock restoration, sea ranching and stock enhancement of marine fishes and invertebrates. Rev. Fish Biol. Fish. 27, 615–649 (2017).
4. Christie, M. R., Marine, M. L., French, R. A., Waples, R. S. & Blouin, M. S. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109, 254–260 (2012).
5. Ryman, N. & Laikre, L. Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 5, 325–329 (1991).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献