In-hospital risk stratification algorithm of Asian elderly patients

Author:

Kasim Sazzli,Malek Sorayya,Cheen Song,Safiruz Muhammad Shahreeza,Ahmad Wan Azman Wan,Ibrahim Khairul Shafiq,Aziz Firdaus,Negishi Kazuaki,Ibrahim Nurulain

Abstract

AbstractLimited research has been conducted in Asian elderly patients (aged 65 years and above) for in-hospital mortality prediction after an ST-segment elevation myocardial infarction (STEMI) using Deep Learning (DL) and Machine Learning (ML). We used DL and ML to predict in-hospital mortality in Asian elderly STEMI patients and compared it to a conventional risk score for myocardial infraction outcomes. Malaysia's National Cardiovascular Disease Registry comprises an ethnically diverse Asian elderly population (3991 patients). 50 variables helped in establishing the in-hospital death prediction model. The TIMI score was used to predict mortality using DL and feature selection methods from ML algorithms. The main performance metric was the area under the receiver operating characteristic curve (AUC). The DL and ML model constructed using ML feature selection outperforms the conventional risk scoring score, TIMI (AUC 0.75). DL built from ML features (AUC ranging from 0.93 to 0.95) outscored DL built from all features (AUC 0.93). The TIMI score underestimates mortality in the elderly. TIMI predicts 18.4% higher mortality than the DL algorithm (44.7%). All ML feature selection algorithms identify age, fasting blood glucose, heart rate, Killip class, oral hypoglycemic agent, systolic blood pressure, and total cholesterol as common predictors of mortality in the elderly. In a multi-ethnic population, DL outperformed the TIMI risk score in classifying elderly STEMI patients. ML improves death prediction by identifying separate characteristics in older Asian populations. Continuous testing and validation will improve future risk classification, management, and results.

Funder

Kementerian Sains, Teknologi dan Inovasi,Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3