1. Qi, C. R., Su, H., Mo, K. & Guibas, L. J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 652–660 (2017).
2. Qi, C. R., Yi, L., Su, H. & Guibas, L. J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems30 (2017).
3. Ben-Shabat, Y., Lindenbaum, M. & Fischer, A. 3D point cloud classification and segmentation using 3D modified Fisher vector representation for convolutional neural networks. IEEE Robot. Auto. Lett. 3145–3152 (2018).
4. Li, Y. et al. Pointcnn: Convolution on x-transformed points. In Advances in neural information processing systems, vol. 31 (2018).
5. Thomas, H. et al. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE/CVF international conference on computer vision, 6411–6420 (2019).