Shaping the energy curves of a servomotor-based hexapod robot

Author:

Brodoline Ilya,Sauvageot Emilie,Viollet Stéphane,Serres Julien R.

Abstract

AbstractThe advantageous versatility of hexapod robots is often accompanied by high power consumption, while animals have evolved an energy efficient locomotion. However, there are a lack of methods able to compare and apply animals’ energetic optimizations to robots. In this study, we applied our method to a full servomotor-based hexapod robot to evaluate its energetic performance. Using an existing framework based on the laws of thermodynamics, we estimated four metrics using a dedicated test bench and a simulated robotic leg. We analyzed the characteristics of a single leg to shape the energetic profile of the full robot to a given task. Energy saving is improved by 10% through continuous duty factor adjustment with a 192% increase in power maximization. Moreover, adjusting the robot’s velocity by the step length and associating this with gait switching, reduces the power loss by a further 10% at low-speed locomotion. However, unlike in animals, only one unique optimal operating point has been revealed, which is a disadvantage caused by the low energetic efficiency of servomotor-based hexapods. Thus, these legged robots are severely limited in their capacity to optimally adjust their locomotion to various tasks—a counter-intuitive conclusion for a supposedly versatile robot.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3