Numerical simulation on transient electromagnetic response of separation layer water in coal seam roof

Author:

Yang Haiyan,Jiao JunjunORCID,Wang Qiang,Liu Zhixin,Su Benyu,Xu Yunlei,Li Wenyu,Ran Huageng

Abstract

AbstractMining stress induces deformation and fracture of the overlaying rock, which will result in water filling the separation layer if the aquifer finds access to abscission space along the fracture channels. Accurate detection is crucial to prevent water hazards induced by water-bearing fractures. The 3-D time-domain finite-difference method with Yee’s grid was adopted to calculate full-space transient electromagnetic response; meanwhile, a typical geologic and geophysical model with a water-bearing block in an separation layer was built according to regional tectonics and stratigraphic developments. By using numerical simulation, the induced voltage and apparent resistivity for both vertical and horizontal components were acquired, and then an approximate inversion was carried out based on the “smoke ring” theory. The results indicate that the diffusion velocity of induced voltage is significantly affected by the water-bearing body in the fracture, and the horizontal velocity of induced voltage is lower than the vertical one. The induced voltage curves indicate that the horizontal response to an anomaly body is stronger than the vertical one, leading to a high apparent resistivity resolution of conductivity contrast and separation layer boundary in the horizontal direction. The results of 3-D simulation making use of a measured data model also demonstrate that the horizontal component of apparent resistivity can reflect the electrical structure in a better way; however, its ability to recognize the concealed and fine conductor is rather weak. Accordingly, the observation method or numerical interpolation method needs to be further improved for data processing and interpretation.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3