Author:
Rezaeian AhmadReza,Khatami Fatemeh,Heidari Keshel Saeed,Akbari Mohammad Reza,Mirzaei Akram,Gholami Keykavos,Mohammadi Farsani Reza,Aghamir Seyed Mohammad Kazem
Abstract
AbstractWe aimed to explain the role of mesenchymal stem cells (MSC-exosomes) on gene expressions of epithelial to mesenchymal transition (EMT), angiogenesis, and apoptosis. Four different cell lines were employed, including ACHN, 5637, LNCaP, and PC3, as well-known representatives for renal, bladder, hormone-sensitive, and hormone-refractory prostate cancers, respectively. Cell lines were exposed to diverse concentrations of mesenchymal stem cells-derived exosomes to find IC50 values. Percentages of apoptotic cells were evaluated by Annexin/P.I. staining. Micro Culture Tetrazolium Test assessed proliferative inhibitory effect; and prostate biomarker (KLK2), EMT (E-cadherin and Snail), angiogenesis genes (VEGF-A/VEGF-C), apoptosis genes (BAX/BCL2, P53) and Osteopontin variants (OPNa/b, and c) mRNA levels were studied by realtime PCR method. All 5637, LNCaP, and PC3 following treatment with exosomes illustrated specific responses with changes in expression of different genes. The increased TP53 and decreased BCL2 expressions were seen in 5637, LNCaP, and PC3. In PC3, OPNb and OPNc have raised more than P53; in LNCap, the increase was in VEGF-c. In 5637 cells, more than TP53 and BCL2 changes, two other genes, VEGFa and B.A.X., have decreased, suggesting exosomes’ anti-apoptotic and anti-angiogenic effects. The kidney tumor cell line saw no significant gene expression change in ten targeted genes. MSC-exosomes therapy has augmented some interesting antitumor effects on prostate, bladder, and kidney cancer cell lines. This effect which originates from exosomes’ potency to persuade apoptosis and prevent the proliferation of cancer cells simultaneously, was more substantial in bladder cancer, moderate in prostate cancer, and mild in renal cancer.
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献