Time-Spectral based Polarization-Encoding for Spatial-Temporal Super-Resolved NSOM Readout

Author:

Karelits Matityahu,Mandelbaum Yaakov,Zalevsky Zeev,Karsenty AviORCID

Abstract

Abstract Detection of evanescent waves through Near-field Scanning Optical Microscopy (NSOM) has been simulated in the past, using Finite Elements Method (FEM) and 2D advanced simulations of a silicon Schottky diode, shaped as a truncated trapezoid photodetector, and sharing a subwavelength pin hole aperture. Towards enhanced resolution and next applications, the study of polarization’s influence was added to the scanning. The detector has been horizontally shifted across a vertically oriented Gaussian beam while several E-field modes, are projected on the top of the device. Both electrical and electro-optical simulations have been conducted. These results are promising towards the fabrication of a new generation of photodetector devices which can serve for Time-Spectral based Polarization-Encoding for Spatial-Temporal Super-Resolved NSOM Readout, as developed in the study.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3