Model-based estimation of muscle and ACL forces during turning maneuvers in alpine skiing

Author:

Heinrich DieterORCID,van den Bogert Antonie J.,Mössner Martin,Nachbauer Werner

Abstract

AbstractIn alpine skiing, estimation of the muscle forces and joint loads such as the forces in the ACL of the knee are essential to quantify the loading pattern of the skier during turning maneuvers. Since direct measurement of these forces is generally not feasible, non-invasive methods based on musculoskeletal modeling should be considered. In alpine skiing, however, muscle forces and ACL forces have not been analyzed during turning maneuvers due to the lack of three dimensional musculoskeletal models. In the present study, a three dimensional musculoskeletal skier model was successfully applied to track experimental data of a professional skier. During the turning maneuver, the primary activated muscles groups of the outside leg, bearing the highest loads, were the gluteus maximus, vastus lateralis as well as the medial and lateral hamstrings. The main function of these muscles was to generate the required hip extension and knee extension moments. The gluteus maximus was also the main contributor to the hip abduction moment when the hip was highly flexed. Furthermore, the lateral hamstrings and gluteus maximus contributed to the hip external rotation moment in addition to the quadratus femoris. Peak ACL forces reached 211 N on the outside leg with the main contribution in the frontal plane due to an external knee abduction moment. Sagittal plane contributions were low due to consistently high knee flexion (> 60$$^{\circ }$$ ), substantial co-activation of the hamstrings and the ground reaction force pushing the anteriorly inclined tibia backwards with respect to the femur. In conclusion, the present musculoskeletal simulation model provides a detailed insight into the loading of a skier during turning maneuvers that might be used to analyze appropriate training loads or injury risk factors such as the speed or turn radius of the skier, changes of the equipment or neuromuscular control parameters.

Funder

This work was supported by the EU through the INTERREG program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3