Exposure to arsenic and other potentially toxic elements: health risk assessment and source analysis in the Wuming Basin, Guangxi Province, China

Author:

Hu Bo,Li Jie,Liu Rui,Lei Guoxin,Wang Xinyu,Wang Lei

Abstract

AbstractGuangxi, China, is one of the world's largest karst regions where potential toxic elements tend to accumulate, resulting in high soil background values. This study explores the ecological risk, elemental baseline values, and sources of potential toxic elements in karst regions, expanding the research to include 21 common elements. The significance of this research lies in its implications for the management of potential toxic element pollution, the formulation of environmental quality standards, and soil remediation in karst areas. In this study, 12,547 topsoil samples (0–20 cm) were collected in the study area. Pollution assessment and ecological risk evaluation of eight potential toxic elements (Zn, Ni, Cu, Pb, Cd, Hg, Cr, and As) were conducted using the geo-accumulation index method and potential ecological risk index method. Multivariate statistical analysis was applied to analyze the total content of 21 common elements (Zn, Ni, Cu, Pb, P, Cd, Hg, Co, Mn, Cr, V, I, S, As, pH, Se, N, CaO, Corg, Mo, and F). Additionally, the potential sources of 21 soil elements were preliminarily quantitatively analyzed using the principal component analysis-absolute principal component scores-multiple linear regression receptor model. The results showed that (1) Zn, Ni, Cu, Pb, Cd, Cr, V, and As were enriched in the research area and Ca, Cd, Mn, Mo, Hg, As, and Cu might have been influenced by human activities; (2) Cr, Pb, As, and Zn were generally lightly polluted, with Hg having a moderate potential ecological risk level; and (3) Ni and Zn have contributions of 37.99% and 35.07% from geological sources, agricultural fertilization, and pesticides. Mo, V, Cr, Se, Hg, and As exhibit contributions ranging from 39.44 to 59.22% originating from geological backgrounds and human activities. Corg, S, N, and P show contributions of 45.39% to 80.33% from surface vegetation. F, Co, Mn, and Pb have contributions ranging from 31.63 to 47.93% from acidic rocks in the soil parent material, mining activities, and transportation. Cd and CaO derive 31.67% and 40.23%, respectively, from soil parent material and industrial sources. I has 31.94% from geological background and human activities, and 31.95% from soil parent material and atmospheric sources. Cu has 30.56% from geological sources. The study results can serve as a scientific basis for element research in karst areas domestically and internationally.

Funder

National Multi-Purpose Regional Geochemical Survey (NMPRGS) Project

Guangxi Key Mineral Resources Deep Exploration Talent Highland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3