Printing special surface components for THz 2D and 3D imaging

Author:

Yan Bo,Wang Zhigang,Zhao Xing,Lin Lie,Wang Xiaolei,Gong Cheng,Liu Weiwei

Abstract

AbstractThe paper reports an off-axis large focal depth THz imaging system which consists of three 3D printed special surface components (two aspherical mirrors and an axicon). Firstly, the optical design software is used to design and optimize the aspherical parabolic mirror. Secondly, the optimized mirror is prepared by a 3D printing and metal cladding method. Thirdly, a THz axicon is designed for generation of quasi-Bessel Beam and a new geometric theoretical model of oblique incident light for axicon is established. Finally, the imaging system based on the special surface components is constructed. Its maximum diffraction-free distance is about 60 mm, which is 6 times higher than the traditional system. To verify the effectiveness, THz two-dimensional imaging experiments and three-dimensional computed tomography experiment are carried out. The results are consistent with the design and calculations.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3