A study of quantum Berezinskii–Kosterlitz–Thouless transition for parity-time symmetric quantum criticality

Author:

Sarkar Sujit

Abstract

AbstractThe Berezinskii–Kosterlitz–Thouless (BKT) mechanism governs the critical behavior of a wide range of many-body systems. We show here that this phenomenon is not restricted to conventional many body system but also for the strongly correlated parity-time (PT) symmetry quantum criticality. We show explicitly behaviour of topological excitation for the real and imaginary part of the potential are different through the analysis of second order and third order renormalization group (RG). One of the most interesting feature that we observe from our study the presence of hidden QBKT and also conventional QBKT for the real part of the potential whereas there is no such evidence for the imaginary part of the potential. We also present the exact solution for the RG flow lines. We show explicitly how the physics of single field double frequencies sine-Gordon Hamiltonian effectively transform to the dual field double frequencies sine-Gordon Hamiltonian for a certain regime of parameter space. This is the first example in any quantum many body systems. We present the results of second order and third order RG flow results explicitly for the real and imaginary part of the potential. This PT symmetric system can be experimentally tested in ultra-cold atoms. This work provides a new perspective for the PT symmetric quantum criticality.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference50 articles.

1. Livio, M. Why symmetry matters. Nature 490, 472–473 (2012).

2. Weinberg, S. Symmetry: A ‘key to nature’s secrets’. The New York Review of Books. https://www.nybooks.com/articles/2011/10/27/symmetry-key-natures-secrets/ (2011).

3. Bender, C. M. PT symmetry. In Quantum and Classical Physics (World Scientific, 2019).

4. Heiss, D. Circling exceptional points. Nat. Phys. 12, 40 (2016).

5. Heiss, D. The physics of exceptional points.arXiv:1210.7536v1.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3