Author:
Liu Yuting,Yang Haiyan,Zeng Rongrong,He Lu,Xiao Ting,Peng Xiaomei,Kuang Zhuo,Wu Liwen
Abstract
AbstractAn increasing number of studies have focused on the role of NEDD4-2 in regulating neuronal excitability and the mechanism of epilepsy. However, the exact mechanism has not yet been elucidated. Here, we explored the roles of NEDD4-2 and the CLC-2 channel in regulating neuronal excitability and mesial temporal lobe epilepsy (MTLE) pathogenesis. First, chronic MTLE models were induced by lithium-pilocarpine in developmental rats. Coimmunoprecipitation analysis revealed that the interaction between CLC-2 and NEDD4-2. Western blot analyses indicated that NEDD4-2 expression was downregulated, while phosphorylated (P-) NEDD4-2 and CLC-2 expression was upregulated in adult MTLE rats. Then, the primary hippocampal neuronal cells were isolated and cultured, and the NEDD4-2 was knocked down by shRNA vector, resulting in decreased protein levels of CLC-2. While CLC-2 absence caused increased NEDD4-2 in cells. Next, in an epileptic cell model induced by a Mg2+-free culture, whole-cell current-clamp recording demonstrated that NEDD4-2 deficiency inhibited the spontaneous action potentials of cells, and CLC-2 absence caused more significant decrease in the spontaneous action potentials of cells. In conclusion, we herein revealed that NEDD4-2 regulates the expression of CLC-2, which is involved in neuronal excitability, and participates in the pathogenesis of MTLE.
Funder
Natural Science Foundation of Hunan Province
National Natural Science Foundation of China
Huaxiang Youth Talent Support Program
Key projects supported by Hunan Provincial Health Commission
Publisher
Springer Science and Business Media LLC