Open software platform for automated analysis of paper-based microfluidic devices

Author:

Parker Rayleigh W.,Wilson Daniel J.,Mace Charles R.

Abstract

AbstractDevelopment of paper-based microfluidic devices that perform colorimetric measurements requires quantitative image analysis. Because the design geometries of paper-based microfluidic devices are not standardized, conventional methods for performing batch measurements of regularly spaced areas of signal intensity, such as those for well plates, cannot be used to quantify signal from most of these devices. To streamline the device development process, we have developed an open-source program called ColorScan that can automatically recognize and measure signal-containing zones from images of devices, regardless of output zone geometry or spatial arrangement. This program, which measures color intensity with the same accuracy as standard manual approaches, can rapidly process scanned device images, simultaneously measure identified output zones, and effectively manage measurement results to eliminate requirements for time-consuming and user-dependent image processing procedures.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3