Author:
Khedri Mohammad,Keshavarz Moraveji Mostafa
Abstract
AbstractThe synthesis of polymeric nanoparticles (NPs) with efficient drug loading content and targeting moieties is an attractive field and remains a challenge in drug delivery systems. Atomistic investigations can provide an in-depth understanding of delivery devices and reduce the number of expensive experiments. In this paper, we studied the self-assembly of poly (lactic-co-glycolic acid)-b-poly (ethylene glycol) with different molecular weights and surface compositions. The innovation of this molecular study is the loading of an antitumor drug (docetaxel) on a targeting ligand (riboflavin). According to this work, a novel, biocompatible and targeted system for cancer treatment has been developed. The obtained results revealed a correlation between polymer molecular weight and the stability of particles. In this line, samples including 20 and 10 w/w% moiety NPs formed from polymers with 3 and 4.5 kDa backbone sizes, respectively, are the stable models with the highest drug loading and entrapment efficiencies. Next, we evaluated NP morphology and found that NPs have a core/shell structure consisting of a hydrophobic core with a shell of poly (ethylene glycol) and riboflavin. Interestingly, morphology assessments confirmed that the targeting moiety located on the surface can improve drug delivery to receptors and cancerous cells. The developed models provided significant insight into the structure and morphology of NPs before the synthesis and further analysis of NPs in biological environments. However, in the best cases of this system, Dynamic Light Scattering (DLS) tests were also taken and the results were consistent with the results obtained from All Atom and Coarse Grained simulations.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献