Network Communities of Dynamical Influence

Author:

Clark Ruaridh,Punzo Giuliano,Macdonald Malcolm

Abstract

AbstractFuelled by a desire for greater connectivity, networked systems now pervade our society at an unprecedented level that will affect it in ways we do not yet understand. In contrast, nature has already developed efficient networks that can instigate rapid response and consensus when key elements are stimulated. We present a technique for identifying these key elements by investigating the relationships between a system’s most dominant eigenvectors. This approach reveals the most effective vertices for leading a network to rapid consensus when stimulated, as well as the communities that form under their dynamical influence. In applying this technique, the effectiveness of starling flocks was found to be due, in part, to the low outdegree of every bird, where increasing the number of outgoing connections can produce a less responsive flock. A larger outdegree also affects the location of the birds with the most influence, where these influentially connected birds become more centrally located and in a poorer position to observe a predator and, hence, instigate an evasion manoeuvre. Finally, the technique was found to be effective in large voxel-wise brain connectomes where subjects can be identified from their influential communities.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference43 articles.

1. IDG. 2018 cloud computing survey. https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/ (2019).

2. Henry, C. Amazon planning 3,236-satellite constellation for internet connectivity. https://spacenews.com/amazon-planning-3236-satellite-constellation-for-internet-connectivity/ (2019).

3. I., Andrea, C., Chrysostomou & G., Hadjichristofi Internet of things: Security vulnerabilities and challenges. In 2015 IEEE Symposium on Computers and Communication (ISCC), 180–187 (IEEE, 2015).

4. U., Braun, S. F., Muldoon & D. S., Bassett On human brain networks in health and disease. eLS (2015).

5. Mišić, B., Goñi, J., Betzel, R. F., Sporns, O. & McIntosh, A. R. A network convergence zone in the hippocampus. PLoS computational biology. 10, e1003982 (2014).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3