Author:
Hoppe Isabel J.,Brandstetter Hans,Schönauer Esther
Abstract
AbstractCollagen is the most abundant protein in higher animals and as such it is a valuable source of amino acids and carbon for saprophytic bacteria. Due to its unique amino acid composition and triple-helical tertiary structure it can however only be cleaved by specialized proteases like the collagenases secreted by some bacteria. Among the best described bacterial collagenases are ColG and ColH from Clostridium histolyticum. Many Bacillus species contain homologues of clostridial collagenases, which play a role in some infections caused by B. cereus. Detailed biochemical and enzymatic characterizations of bacillial collagenases are however lacking at this time. In an effort to close this gap in knowledge we expressed ColQ1 from B. cereus strain Q1 recombinantly, investigated its metal dependency and performed peptide, gelatin and collagen degradation assays. Our results show that ColQ1 is a true collagenase, cleaving natively folded collagen six times more efficiently than ColG while at the same time being a similarly effective peptidase as ColH. In both ColQ1 and ColG the rate-limiting step in collagenolysis is the unwinding of the triple-helix. The data suggest an orchestrated multi-domain mechanism for efficient helicase activity.
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell. Biol. 15, 771–785. https://doi.org/10.1038/nrm3902 (2014).
2. Kadler, K. Extracellular matrix. 1: fibgril-forming collagens. In Protein profile (ed. Sheterline, P.) 519–638 (Academic Press, London, 1994).
3. Olsen, B. R. & Ninomiya, Y. Collagens. In Guidebook to the extracellular matrix, anchor, and adhesion proteins (eds Vale, T. & Kreis, R.) 380–407 (Oxford University Press, Oxford, 1999).
4. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 (2009).
5. Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573. https://doi.org/10.1016/j.cardiores.2005.12.002 (2006).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献