Age related changes of rib cortical bone matrix and the application to forensic age-at-death estimation

Author:

Bonicelli Andrea,Zioupos Peter,Arnold Emily,Rogers Keith D.,Xhemali Bledar,Kranioti Elena F.

Abstract

AbstractForensic anthropology includes, amongst other applications, the positive identification of unknown human skeletal remains. The first step in this process is an assessment of the biological profile, that is: sex, age, stature and ancestry. In forensic contexts, age estimation is one of the main challenges in the process of identification. Recently established admissibility criteria are driving researchers towards standardisation of methodological procedures. Despite these changes, experience still plays a central role in anthropological examinations. In order to avoid this issue, age estimation procedures (i) must be presented to the scientific community and published in peer reviewed journals, (ii) accurately explained in terms of procedure and (iii) present clear information about the accuracy of the estimation and possible error rates. In order to fulfil all these requirements, a number of methods based on physiological processes which result in biochemical changes in various tissue structures at the molecular level, such as modifications in DNA-methylation and telomere shortening, racemization of proteins and stable isotopes analysis, have been developed. The current work proposes a new systematic approach in age estimation based on tracing physicochemical and mechanical degeneration of the rib cortical bone matrix. This study used autopsy material from 113 rib specimens. A set of 33 parameters were measured by standard bio-mechanical (nanoindentation and microindentation), physical (TGA/DSC, XRD and FTIR) and histomorphometry (porosity-ImageJ) methods. Stepwise regressions were used to create equations that would produce the best ‘estimates of age at death’ vs real age of the cadavers. Five equations were produced; in the best of cases an equation counting 7 parameters had an R2 = 0.863 and mean absolute error of 4.64 years. The present method meets all the admissibility criteria previously described. Furthermore, the method is experience-independent and as such can be performed without previous expert knowledge of forensic anthropology and human anatomy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3