Author:
Lentz Hartmut H. K.,Bergmann Hannes,Conraths Franz J.,Schulz Jana,Sauter-Louis Carola
Abstract
AbstractTo control African swine fever (ASF) efficiently, easily interpretable metrics of the outbreak dynamics are needed to plan and adapt the required measures. We found that the spread pattern of African Swine Fever cases in wild boar follows the mechanics of a diffusion process, at least in the early phase, for the cases that occurred in Germany. Following incursion into a previously unaffected area, infection disseminates locally within a naive and abundant wild boar population. Using real case data for Germany, we derive statistics about the time differences and distances between consecutive case reports. With the use of these statistics, we generate an ensemble of random walkers (continuous time random walks, CTRW) that resemble the properties of the observed outbreak pattern as one possible realization of all possible disease dissemination patterns. The trained random walker ensemble yields the diffusion constant, the affected area, and the outbreak velocity of early ASF spread in wild boar. These methods are easy to interpret, robust, and may be adapted for different regions. Therefore, diffusion metrics can be useful descriptors of early disease dynamics and help facilitate efficient control of African Swine Fever.
Funder
Horizon 2020 Framework Programme
Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献