Identification of diagnostic markers for moyamoya disease by combining bulk RNA-sequencing analysis and machine learning

Author:

Xu Yifan,Chen Bing,Guo Zhongxiang,Chen Cheng,Wang Chao,Zhou Han,Zhang Chonghui,Feng Yugong

Abstract

AbstractMoyamoya disease (MMD) remains a chronic progressive cerebrovascular disease with unknown etiology. A growing number of reports describe the development of MMD relevant to infection or autoimmune diseases. Identifying biomarkers of MMD is to understand the pathogenesis and development of novel targeted therapy and may be the key to improving the patient’s outcome. Here, we analyzed gene expression from two GEO databases. To identify the MMD biomarkers, the weighted gene co-expression network analysis (WGCNA) and the differential expression analyses were conducted to identify 266 key genes. The KEGG and GO analyses were then performed to construct the protein interaction (PPI) network. The three machine-learning algorithms of support vector machine-recursive feature elimination (SVM-RFE), random forest and least absolute shrinkage and selection operator (LASSO) were used to analyze the key genes and take intersection to construct MMD diagnosis based on the four core genes found (ACAN, FREM1, TOP2A and UCHL1), with highly accurate AUCs of 0.805, 0.903, 0.815, 0.826. Gene enrichment analysis illustrated that the MMD samples revealed quite a few differences in pathways like one carbon pool by folate, aminoacyl-tRNA biosynthesis, fat digestion and absorption and fructose and mannose metabolism. In addition, the immune infiltration profile demonstrated that ACAN expression was associated with mast cells resting, FREM1 expression was associated with T cells CD4 naive, TOP2A expression was associated with B cells memory, UCHL1 expression was associated with mast cells activated. Ultimately, the four key genes were verified by qPCR. Taken together, our study analyzed the diagnostic biomarkers and immune infiltration characteristics of MMD, which may shed light on the potential intervention targets of moyamoya disease patients

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3