Application of machine learning in predicting oil rate decline for Bakken shale oil wells

Author:

Bhattacharyya Subhrajyoti,Vyas Aditya

Abstract

AbstractCommercial reservoir simulators are required to solve discretized mass-balance equations. When the reservoir becomes heterogeneous and complex, more grid blocks can be used, which requires detailed and accurate reservoir information, for e.g. porosity, permeability, and other parameters that are not always available in the field. Predicting the EUR (Estimated Ultimate Recovery) and rate decline for a single well can therefore take hours or days, making them computationally expensive and time-consuming. In contrast, decline curve models are a simpler and speedier option because they only require a few variables in the equation that can be easily gathered from the wells' current data. The well data for this study was gathered from the Montana Board of Oil and Gas Conservation's publicly accessible databases. The SEDM (Stretched Exponential Decline Model) decline curve equation variables specifically designed for unconventional reservoirs variables were correlated to the predictor parameters in a random oil field well data set. The study examined the relative influences of several well parameters. The study's novelty comes from developing an innovative machine learning (ML) (random forest (RF)) based model for fast rate-decline and EUR prediction in Bakken Shale oil wells. The successful application of this study relies highly on the availability of good quality and quantity of the dataset.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3